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Lunar laser ranging and fundamental astrometry

By C. A. MurrAY AND B.D. YarLror
Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex BN27 1RP
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The frame of reference to which a positional astronomer refers his observations is defined
by the directions of the Earth’s axis and of the equinox. This frame rotates relative to an
inertial frame owing to the precessional motion.

Traditionally, the precession is determined from an analysis of stellar proper motions
on the assumption that their average kinematic behaviour follows a very simple pattern
of parallactic motion and galactic rotation. Recent work has attempted to determine
precession by measuring motions of stars relative to extragalactic objects.

An alternative method, advocated by the late G. M. Clemence, is to measure the
apparent absolute rotations of planetary orbits, but so far the results from this approach
have not been entirely satisfactory.

In this paper the traditional method of setting up a fundamental reference frame and
determining precession will be reviewed, and the possibility of using the very high
precision of the lunar laser ranging measurements to determine the rotation of the lunar
orbit will be investigated.
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The instantaneous reference frame, with respect to which observations of positions of celestial
objects, at any epoch, are referred, is defined kinematically by the the directions of the Earth’s
axis and the line of equinoxes. Both these directions must be determined relative to the reference
frame of the observing instrumental system, by means of observations which, in practice, extend
over finite time intervals.

Because of the luni-solar precession of the Earth’s axis and the slow rotation of the ecliptic, the
‘fixed’ stars appear to move rapidly relative to the instantaneous celestial reference frame; it is
thus convenient to define a quasi-inertial frame by adopting numerical expressions to describe
the precessional rotations. It is this conventional reference frame which forms the basis of
fundamental star catalogues and of apparent ephemerides of objects in the Solar System.

The objectives of fundamental astrometry are therefore twofold:

/|

(1) To construct and maintain catalogues of positions and proper motions of stars in order to
render the conventional reference frame generally accessible to observation.
(2) To measure the departure of the conventional reference frame from a truly inertial system.

2. THE INSTANTANEOUS CELESTIAL REFERENCE FRAME
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Traditionally the north pole of the instantaneous reference frame has been defined to coincide
with the axis of rotation of the Earth. Recently, Atkinson (19%73) has drawn attention to observa-
tional difficulties associated with this pole, and pointed out that the pole of figure would be more
appropriate. However, all that is required is an axis whose direction can in principle be calcu-
lated from dynamical theory, as a function of the time, with sufficient accuracy for satisfactory
interpolation over the time intervals covered by the observations used for determining its
direction relative to the instrumental frame. In the case of a classical transit circle, circumpolar
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508 C.A.MURRAY AND B.D.YALLOP

stars are observed at both upper and lower transits to fix the azimuth and colatitude; for the
former, observations may extend over a few days, whereas for the latter, several years observations
are generally combined after due allowance for variation of latitude.

3. THE CONVENTIONAL REFERENCE FRAME

Having determined the direction of the pole relative to the instrumental system throughout the
period covered by a series of observations, it is in principle possible to form a catalogue of star
positions (and variations) in which the declinations are fundamental, but the right ascensions are
relative to an arbitrary zero point. It is thus necessary to determine the direction of the line of
equinoxes, as defined kinematically, relative to the catalogue right ascensions.

TABLE 1. STANDARD ERRORS OF SINGLE OBSERVATIONS

(Cooke, T.C., Herstmonceux.)

15¢, cos & cs
Moon: single limb +0.87” +1.35”
Mosting A 0.70 0.98
Sun: two limbs 0.80 0.62
stars 0.29 0.43

This direction has been derived most frequently from meridian observations of the Sun; in this
case the determination is virtually independent of any dynamical theory of the Sun’s motion.
On the other hand, observationally the Sun is not an ideal object for the purpose. The observa-
tions of the limbs of the solar disk are liable to errors of a different nature from those affecting
stellar objects, but more important, the thermal states of the instrument, and the atmosphere, are
quite different at the time of the transit of the Sun, compared with those at night when most of
the stars are observed.

Observations of other bodies in the Solar System can also be used to define the ecliptic plane,
and hence the line of equinoxes, but in these cases the determination depends much more on the
dynamical theories of their motions. Attempts have been made to use minor planets, but in
practice it is difficult to separate the equinox correction from corrections to the orbital elements
of the planets and the Earth, unless observations extend over a large arc of the orbits, which is
seldom the case (Jackson 1968; Fricke 1972).

Lunar occultations have been used for determining the equinox (Newcomb 1912; Spencer
Jones 1929; Morrison & Sadler 1969). Although the Moon is generally observed during the
night, the difficulties for the meridian observer which are associated with the finite disk
are more serious than for the Sun because of the irregularity of the limb and the fact that the
position of the centre has to be inferred from single limb observations in each coordinate. These
difficulties are much reduced if one observes a surface feature, such as the crater Mosting A,
although errors depending on phase may still persist. This particular crater has been observed
regularly since 1905 on the meridian programmes at Greenwich and Herstmonceux. It was first
observed for a special programme, jointly with the Cape Observatory for determining the lunar
parallax (Crommelin 1911). The standard errors of single determinations of the centres, of the
Moon, the Sun and stars, deduced from current visual observations on the Cooke Transit Circle
at Herstmonceux are summarized in table 1. Substantially higher accuracy on stars can be
achieved with the use of photographic and photoelectric observing techniques (Hog 1974).

We sce that the observations of Mésting A are substantially better than those of the lunar limb
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even though limb corrections have been applied, and could well be used for determining the
equinox, provided that the lunar ephemeris were sufficiently precise. Attempts were made to use
observations made at Greenwich from 1905 to 1939 for this purpose, but these led to inconclusive
results and were never published.

With the great improvement in the lunar ephemeris which will be possible from the results of
lunar laser ranging, it would not be necessary to allow for orbital and librational corrections in
any future analysis of meridian observations, provided that the selenographic coordinates of the
crater were well tied in to the system defined by the retro-reflectors. Indeed, any observable
surface feature on the Moon could be used as an absolute standard of right ascension and
declination as a function of atomic time T.A.I., which could be used to control the observed star
positions in the zodiacal belt.

4. ABSOLUTE ROTATION OF THE CONVENTIONAL REFERENCE FRAME

The departure of the conventional reference frame from an inertial frame must be measured by
observing some phenomenon which can be predicted absolutely by dynamical theory. As
Newcomb (1897) has remarked, the actual observable effects on planetary orbits which would
arise on account of an erroneous value of the luni-solar precession are very small. Clemence (1966)
showed that the precession could indeed be determined from observations of the secular varia-
tions of the rotational elements of the orbits of Mercury, Venus and the Earth, but the precision
attainable was limited at that time by uncertainties in planetary masses, particularly those of
Mercury and Mars (see also Wayman 1966).

Much higher formal precision in measuring the rotation of the reference frame can be achieved
by analysing proper motions of stars. If r is the position vector of a star we may express its absolute
proper motion by dr or

dt=—62+w/\ r, (1)

where Or[0t represents the apparent proper motion measured relative to the conventional
reference frame (fundamental catalogue) and w is a small vector representing the rotation of the
conventional frame relative to an inertial frame.

In the absence of a detailed dynamical theory of the motions of stars in the Galaxy, equation (1)
has been used for determining a number of parameters describing a simple model for dr/d¢ as well
as components of », from measured proper motions r/0¢. It is customary to include in the model,
(1) Oort’s constants 4, B characterizing the galactic shear and differential rotation, parallel to
the galactic plane, and (ii) the three components of the vector secular parallax of the centroid of
stars used in the analysis. Although, within a distance of a few hundred parsecs, (1) isindependent
of distance, the parallactic motion (ii) depends in principle on a knowledge of the relative
distances of stars. In spite of the obvious limitations of such a model, such as the neglect of
differential motion depending on distance from the galactic plane, and also the effects of other
possible non-random motions, this classical approach yields surprisingly good results.

Let k, h be unit vectors directed towards the poles of the ecliptic and mean equator respectively
at some standard epoch. The corresponding mean equinox is then in the direction

i=h A kcosece,
where € is the mean obliquity of the ecliptic. We can write, formally,
o = — APk + Adh — Aéi, (2)
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where A¥ is a correction to the conventional value of the luni-solar precession, Ad is a correction
to proper motions in right ascension and Aé is a rotation of the equator about the line of equinoxes.
The component Ag is generally included in any analysis in order to account for a spurious
‘motion of the equinox’ which has arisen through variation of the systematic errors affecting
determination of the equinox corrections over the past two centuries.

Clearly, only three independent components of rotation can be determined. Since galactic
rotation (Oort’s constant B) is included, it is not possible to derive three components of w. It is
customary to ignore Aé, but it so happens that the pole of the Galaxy is well inclined to both
k and h and hence Aé, if it exists, will vitiate the determination of B (Aoki 1967; Fricke 1972).
However, the theoretical motion of the equator is well understood and there is no reason to
suppose that Aé # 0.

TABLE 2. OBSERVED ROTATION OF CONVENTIONAL REFERENGE FRAME
(Unit: 0.01”/century.)

Lick Pulkovo FK4 Stars
An +32+10 +414+12 +434+6
Ak —79+10 +43+12 —2249
Aé +17+11

Fricke (1968) has carried out an extensive analysis of the proper motions of 512 distant stars on
the FK 4 system. His results for the precessional rotations An = A¥sine, Ak = A¥ cose— Ad,
are summarized above in the third column of table 2.

Results are now becoming available from two observational programmes which are designed
to give absolute proper motions of stars relative to extra-galactic objects. By comparing these
absolute motions, with the apparent motions measured relative to the conventional reference
frame (FK4) it is possible to insert dr/d¢ for each starinto (1), and hence to determine the three
components of @ directly.

Vasilevskis & Klemola (1971) have given the results of a pilot programme for the Lick proper
motion survey. They carried out solutions both with and without a Aé term; since thisis orthogonal
to An, Ak the results for the two latter components were essentially the same in both solutions. The
weighted average result from analyses of two groups of stars (mean m,, = 11.0 and 10.1)
measured on the same plates relative to the same galaxies are also given in the first column of
table 2. The standard errors quoted are the present authors’ estimates based on the assumption
that the accuracy of measurement of a star image is about twice that of a galaxy image
(Vasilevskis 1957).

The second column of table 2 gives the results of the Pulkovo programme of measuring
absolute proper motions relative to galaxies (Fatchikhin 1g70).

We see that there is general agreement, within the standard errors, for Az and hence for the
luni-solar precession A, but that there is as yet an unexplained divergence between values of Ak.
Even so, the luni-solar precession must still be uncertain by at least 0.1”/century, which corre-
sponds to a velocity of 5km/s at a distance of a kiloparsec. This is larger than the accidental
errors of good radial velocity observations and is half the generally accepted value of Oort’s B
constant.
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5. PRECESSION FROM LUNAR LASER RANGING

The high precision which is attainable in observations of the lunar distance may well make it
possible to determine the luni-solar precession with an accuracy which cannot be achieved by
current techniques of positional astronomy.

In order to examine this possibility, we have carried out a trial solution of fictitious observa-
tions which are supposed to extend over a full revolution of the Moon’s node (235 lunations) with
an average of five observations per lunation centred around full moon and extending over
180° + 140° in elongation from the Sun. The observing station is assumed to be in geocentric
latitude ¢" = 30°.

The basic assumption is that the lunar orbit, including the motions of the node and perigee, is
known absolutely except for the arbitrary constants of the theory, and we seek to determine the
apparent motion of the node from observations.

Each observation gives an equation of condition relating

(1) the constants of the lunar and solar orbits,
(ii) the orientation of the instantaneous celestial reference frame with respect to the ecliptic,

(iii) the coordinates of the observer relative to the instantaneous celestial reference frame,

(iv) the orientation of the lunar reference frame relative to the ecliptic,

(v) the coordinates of the retro-reflectors relative to the lunar reference frame.

Since we are primarily interested only in eliminating terms arising from errors in the lunar
ephemeris, rather than determining them absolutely, we have ignored (iv) and (v) on the
assumption that these will correlate with (i) rather than (ii) and (iii).

The coordinates of the observer relative to the conventional reference frame (star catalogue
system) can be determined by direct astronomical observation at any epoch, or inferred from
observations made at the numerous time and latitude stations; we have therefore assumed these
to be known a priori. However, the conventional reference frame may be rotated about the pole
relative to the instantaneous celestial frame on account of a zero point error in the right ascension
system of the catalogue, and we have allowed for this.

Let S represent the geocentric vector to the centre of the Moon and R that to the observer.
If k, n are unit vectors directed towards the pole of the ecliptic and true equator respectively, and
1is toward the true equinox, we have

8§ = o~1[cos f cos Al +cos f sin Ak A I +sin k], (3)

where A, f, o are the lunar ecliptic longitude, latitude and sine parallax respectively. Also we

can write
R = R,+Aan A R, (4)

where R, = p[cos ¢’ cos 7l +cos ¢’ sintn A l+sin ¢'n],

Ac is the correction required to be added to the right ascension of the star catalogue system,
7 is the local sidereal time relative to that system, and p, ¢’ are the geocentric distance and
latitude of the observer.

The range equation can be written
(S—Ry)

Ad = 15—
S = Ry|

(AS—-AR), (5)

where d is the observed distance.
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Since we are assuming that the components of R relative to the conventional frame are known,
the only contributions to (5) from AR are from corrections to the luni-solar precession, the right
ascension zero point and the obliquity of the ecliptic. All three of these can be functions of time,
and the two latter may also have a constant term as well; a constant rotation in longitude is of
course indistinguishable from a correction to the longitude of the lunar node. Hence we write

AR in the form AR = {— APk + (Ao + tAd) n — (Ac+tA¢) I} A R. (6)

Although, as we remarked above, we should expect Aé to be zero, we retain it in the solution in
case it is not zero, in view of the importance of the influence of such a rotation on the determina-

tion of Oort’s B constant.

We write AS = _éES+ (Wi+W,) AS, (7)

where W, contains only corrections to the dynamical elements of the orbits of the Moon and
Earth, and W, contains corrections to the rotational elements of the lunar orbit.

In the notation of Brown’s Tables of the motion of the Moon (1919) we include corrections to the
following dynamical elements:

l,I’ mean anomalies of Moon and Sun;
D mean elongation of Moon from Sun;
¢,¢’ eccentricities of lunar and solar orbits;
a unperturbed mean distance of Moon from Earth (at zero epoch);
% = E-Ma
V" E+Mda
and a’ is the semi-major axis of the Earth’s orbit;

constant of parallactic terms, in which £, M are masses of Earth and Moon,

n,n’ sidereal mean motions of Moon and Sun;
/) sidereal secular acceleration of the Moon.

If AA, Ag denote corrections to the ecliptic longitude and latitude arising only from corrections
to these dynamical elements, we have

W, = ABsin A\l —Af cos Ak A L+AAE. (8)

Further, if ¢, 2, @ are the inclination, longitude of node and argument of perigee of the lunar
orbit, then

Wy = (Aicos 2+ Adsinisin Q) I+ (Aisin 2—Adsini cos 2) k AL+ (AQ+Adcosi) k. (9)

It should be noted, that, since the Moon’s argument of latitude, F, is equivalent to [+ &, we must
put AF = Alin W, since Ad is included in W,.

In forming the differential coeflicients of A, f, o with respect to the various dynamical elements,
numerical values of the coefficients of the significant terms were taken from Brown’s tables. The
terms which were actually included are represented by the following expressions, which are
correct to second order of small quantities:

A=[4+®+02+2sinl+5esin 2/ — y2sin 25— LPmesin ([ - 2D) — 3me’ sin I’
—3Pma, sin D+ Ytm2sin 2D,  (10)

(F—2D), (11)

ao = 1+Em?+ecosl+e?cos 2/ +32me cos ([ — 2D) — 13mot, cos D +m? cos 2D, (12)

B = 2ysin F+2e¢ysin ({—F) + 2eysin ({+ F) — $mysin


http://rsta.royalsocietypublishing.org/

. \
_SE )

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LUNAR LASER RANGING AND FUNDAMENTAL ASTROMETRY 513

in which y = sin {7 and m = »’[(n—#n’). Even though corrections to the mean motions z, " have
been included when they arise from corrections to the arguments, the ratio m has been supposed
known absolutely and not subject to correction.

From Kepler’s third law the unperturbed mean distance, g, is related to n by

n%a® = E4+ M. (13)
Therefore, since we are allowing for variation of both n and # we must write

AE+M)  2(An+tAn)
E+M 3 n

1
3
- ( )U (14)

Ao Aa o1
e ()+§1An+a—(TA(ao‘), | (15)

where ¢ is the time. Accordingly

where A(ao) represents the differential coeflicients of ao with respect to all the dynamical elements,
including Az.

6. DISCUSSION OF RESULTS

Solutions were carried out at intervals of a year, over the full 18-year period. The formal
standard errors of the five unknowns associated with the rotation of the equatorial reference
frame are listed in table 3 for two solutions: (i) 575 observations extending over 9 years and
(ii) 1151 observations extending over 18 years. The standard error of unit weight for a single
observation of distance has been taken as + 10cm or + 3.23 x 103 arcsecond.

TABLE 3. STANDARD ERRORS OF ROTATION COMPONENTS
AND CENTENNIAL VARIATIONS

) (if)

A +0.0018” +0.0004”
Ac 0.0042” 0.0010”
Aé 0.0456” 0.0062”
AY cos e— A& 0.0182” 0.0033”
A¥ sin e 0.0457” 0.0066”

The zero epoch for all solutions was fixed near the mid point of the 18-year period; there are
thus significant correlations still affecting the 9-year solution, particularly between the constant
and secular parts of the rotation components. Even 9-year solutions for the secular components
give a formal precision which is considerably better than that achieved by classical methods (see
table 2).

It should be remembered that a basic assumption in these calculations has been that the secular
variation of the longitude of the Moon’s node, the argument of perigee and the inclination are
known absolutely from theory. Furthermore, inclusion of terms representing lunar rotation and
reflector coordinates may well weaken the solution for the rotation components of the reference
frame. Therefore, while these results are encouraging, it is by no means evident that they will be
achieved in practice, and it would be unwise at the present time to relax the efforts now being
made to determine the inertial reference frame by classical astrometric techniques.
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The final form of presentation of the results in this paper have been influenced by discussions
with other participants at the meeting, particularly Dr J. G. Williams and Dr D. E. Smith, to
whom the authors are most grateful.
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